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1. INTRODUCTION

We consider a compact Hausdorff space M and denote by C(M) the vector
space of real-valued continuous functions on M. As a norm in C(M) we
introduce the maximum norm

IlgIIM = max Ig(x)l,
xEM

g E C(M).

Let U and V be finite-dimensional subspaces of C(M) which are spanned by
uo, ..., Ur and Vo, ..., Vs E C(M). We assume the convex cone

VM+={VEV:V(X»O forall xEM}

to be nonempty. For eachl E C(M) we define

PM(f) = inf III-'3.11
u E U. V E VM+ V M

and call this number the minimal distance between I and WM = {u/v: U E U,
VEVM +}·

The rational approximation problem consists of finding U E U and vE VM +

such that

a/v is called a best approximant ofIOn WM)' Each couple U E U, V E VM + yields
a trivial upper bound of PM(f). However, for an estimation of the difference
between III- (u/v)IIM and PM(f) or even for an estimation of PM(f) itself it is
important to know lower bounds of PM(f).

In [5] we have developed a principle for the computation of such lower
bounds which has been originated by Collatz [2], [3], [4] and has been
expanded to nonlinear approximation by Meinardus and Schwedt [10], [11].

In this paper we intend to develop a more general principle which can be
handled in a simpler way. For that purpose we consider a nonempty closed
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subset D of M. D is compact and all the functions g E C(M) can be considered
as real-valued continuous functions on D provided with the norm

II gilD = max Ig(x)l·
xeD

Ifwe define

VD+ ={v E V: v(x) > 0 for all XED},

we get a nonempty subset of V since VM +(~ VD+) is assumed to be nonempty.
Furthermore, for

PD(f) = inf Ilf-~II
ueU.veVD+ V D

we have

PD(f) ~ PM(f)·

Our aim is to compute PD(f) or at least to find lower bounds for PD(f) when D
is a certain finite subset of M.

The results of this paper, without proofs, have been given in [6].

2. LOWER BOUNDS FOR THE MINIMAL DISTANCE

Notation. By Rn we denote the real Euclidean n-space and by On the zero
vector of Rn. For X, y ERn we write X ~ Y if and only if Xi ~ YI for i = 1, ... , n.
ZT denotes the transposed vector z. By Izi we mean the vector (lzll, ..., IZn!)T,
where Z = (ZI> .•• , znY.

LEMMA 2.1. If we assume that for a subset D ={XI, ... , Xn} of M there
exist two vectors c = (c l , ... , Cn)T =1= On and P = (PI> •.. , PnY ~ On and numbers
AI> ..., An E R such that

n

2: UiX;)Ci=O,
I~I

j=O, ...,r, (2.1)

then we have

n n

2: f(xI) Vk(XI) CI = 2: Ai(lc; I+PI) Vk(Xi),
I-I ;-1

k=O, ...,s

min A; ~ PD(f).
I-I, .. .,n

(2.2)

(2.3)

(The assertion is a slight generalization of Satz I in [7] where all the A;'S are
assumed to be equal.)
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Proof The case AI ,,;; 0 for at least one i is trivial. Hence we assume

min AI> O.
I

For a given U E U and v E Vn+ the conditions (2.1), (2.2) and P :;;, Bn imply

n ( U(XI») n
I~I CI j(Xi) - v(xl) v(xJ = I~I Ai /ell +PI) V(XI)

:;;, 2: AI /ed V(XI) :;;, (min AI) 2: /ed V(XI)
I-I I I-I

and because of

n

2: /ell V(XI) > 0
I-I

we have
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Since U E U and v E Vn+ are arbitrarily chosen, we can conclude (2.3), which
completes the proof.

In the case PM(f) > 0 by Lemma 3.2 of [8] there exist for each AE (O,PM(f)],
n(,,;; r + s + 3) distinct points Xl> •.. , X n and vectors C i' Bn> p:;;, Bn such that
(2.1) and (2.2) hold if we choose

for i = 1, .. .,n.

Hence, in principle, PM(f) can be estimated from below as best as possible by
use of Lemma 2.1. However, Lemma 2.1 is not very convenient for numerical
purposes.

In order to find a result which can be handled with less effort we need the
following:

Assumption. We require the functions

Uo, ..., U" Vo"!, ...,v.·j (2.4)

to be linearly independent on M. Under this condition there exist n = r + s + 2
distinct points XI' .••, X n EM such that the functions uo, ... , U" vo'f, ... , v.·f
are linearly independent on
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This means that the matrix
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A _ ( uiXI) ) 2

- vk(xI)f(xt)

is nonsingular. If we define the matrix B by

(2.5)

(2.6)
B= (Vk~I»)

where 0 is a zero matrix consisting of r + I rows and r + s + 2 columns we
can formulate

LEMMA 2.2. We assume D = {XI, ... , x n) ~ M, n = r + s + 2, to be such that
the matrix (2.5) is nonsingular. Then for each vector Y = (YI' ... , Yn)T;;;, ()m
Y'f ()m there exists exactly one vector c = (c l , ... , Cn)T 'f ()n such that

and we have

Ac=By

q(y) = min -'Y!-j < PD(f).
UFO CI

(2.7)

(2.8)

Remark. Ifwe choose Y > ()n (that is Yt > 0 for i = I, ... , n), we have q(y) > O.
Hence in this case we always get a positive lower bound of PM(f) by solving the
linear system (2.7) and computing q(y) > O. Furthermore, the assumption
(2.4) yields PM(f) > O.

Proof For each Y ERn, Y ;;;, Om Y 'f On we have

By'f On'

Otherwise, for each v E VD+ we would have

n

L V(XI)YI = 0,
I-I

which is impossible. Since A is nonsingular for each such Y E Rn there is
exactly one solution c 'f ()n of the linear system (2.7). We put 1= {i: CI = 0 and
YI = O} and define for each i ¢ I

if

if

2 j = 0, ..., rand k = 0, ..., s denote row indices and j = 1, ..., r + s + 2 denotes column
indices.
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where Pi> 0 is at our disposal. Ifwe put Pi = 0 for each i such that Ci =1= 0, the
system (2.7) can be written as

j=O, ... ,r,

k=O, ...,s.

Hence by Lemma 2.1 we conclude

min AI";;; PD(f)·
i~I

If for each i ¢ I such that Ci = 0 we choose PI > 0 sufficiently small, we can
achieve

( ) . YI . \
q Y = mm -I-I = mIn IIi'

Cli'O CI I~I

which completes the proof.

THEOREM 2.1. Under the assumption ofLemma 2.2for the set D ~ M we have

PD(f) = max q(y),
yEK

where q(y) is defined by (2.8) and

K = {y ERn: y ;? On, y =1= On}. (2.9)

Proof We have to show that there exists y E K such that

q(y) = PD(f)·

Then the assertion follows by Lemma 2.2. By Satz 2 in [7] there exist eERn,
e =1= On and P ERn, P ;? On so that

Ae=PD(f)·B(!el +p)

where A and B are given by (2.5) and (2.6). If we put y = PD(f) (!el +p), then
y E K, and by Lemma 2.2

q(y) = !pin I~'I ,,;;; PD(f)·
Cii'O CI

On the other hand, for each i such that el =1= 0 we have

Yi (f) led +Pi f)leil = PD led;? PD( ,

whence PD(f) ,,;;; q(y), which completes the proof.



172 WERNER KRABS

In the setting of Theorem 2.1 the computation of PD(f) leads to the following
nonlinear optimization problem (which is solvable): Under the conditions

A is to be maximized (A = A-I B).

3. A NONLINEAR EIGENVALUE PROBLEM

Let D = {Xl> ••• , Xn}, n = r + s + 2, be a subset of M such that the matrix (2.5)
is nonsingular. We consider the following problem: Find a number A> °
such that the system

n

L UiXI)CI = 0, j = 0, ..., r,
1-1

(3.1)
n n

L Vk(XI)f(XI) Cl =;\ L ICI IVk(XI),
1-1 1-1

k=O, ...,S

has a solution C = (c.. ..., Cn)T f:: 8n For each such number A we have, by
Lemma 2.1,

;\ <; PD(f)·

If there is a best approximant of fin

WD = {~; U E U, V E VD+} c;: C(D)

we know, [7], that for ;\ = PD(f) there is a nontrivial solution C of (3.1).
Furthermore, we know by Satz 2.1 in [8] that there is a subset D of M such that
for;\ = PM(f) the system (3.1) admits a nontrivial solution C if the approxima
tion problem in C(M) is solvable. By the substitution

I
1-'=A

(3.2)

the above problem turns out to be equivalent to the following nonlinear
eigenvalue problem: Find a number I-' > °such that there is a solutiony E K of

IAyl = fLY

where A = A-I B, A is given by (2.5), Bby (2.6) and Kby (2.9).

(3.3)
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THEOREM 3.1. There is ayE K and a fL > 0 such that (3.3) holds, i.e., such that

solve problem (3.1).

c=Ay and
1A=

fL

Proof (According to [9].) We define a mapping P :R" -+ R" by

P(y) = IAyl, y ERn. (3.4)

In the proof of Lemma 2.2 we have shown

By of. 8n for each y E K.

HenceP(y) = IAyj = 1.1-1Byl > 8n and of.8n foreachy E K; that is, P(K) <;;; K.
Evidently the subset

of K is convex and compact and we have

n

IIP(Y)III: = L P(Y)I > 0
I-I

for all yES. Hence the operator

- P(y)
P(y) = IIP(Y)lll

is defined on S, continuous and maps S into itself. By Brouwer's fixed-point
theorem there is a y* E S such that P(y*) = y* or

P(y*) = IAy*1 = fL* y*

where fL* = IIP(Y*)III > O. This completes the proof.
For numerical purposes it would be very helpful if the operator P defined by

(3.4) were monotone on K U {8n}; that is,

implies P(y) <P(z).

If we then start with an arbitrary yO E K and define a sequence y" E K by

y"+l = P(yk),

it turns out that for the numbers

k=O, 1,2, ... ,

we have

and
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and
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PD(f) = lim qk = lim qk
k~c:o k-too

ifP is strictly monotone in the sense of Bohl [1].
Ifwe define the matrix IA Iby taking the absolute values of the elements of A

as elements of IAI, then P is obviously monotone on K U {8n} if we have

IAyl = IAIY for each Y EK. (3.5)

Sufficient for (3.5) is that in each row of A all the elements which are unequal
to zero have the same sign. But as E. Bohl pointed out this is also necessary for
P to be monotone on K U {8n}. Bohl gave a simple (unpublished) proof for
this fact, namely: Assume that for some index i and two indices j and k with
j i= k we have AI} i= 0, Alk i= °and sgn Alj = - sgn Alk. Then we define two
vectors y and Z E Rn by

y,~( :
for l,kj and k'}

z,~( ~
for l,kj and k'}

for l=k,
and

for l=k,

Alk for l=j,
Alk for l=j,

AI} AI}

1= 1, ..• n.

If we choose 0.;;;'\ < 1, theny, Z E Kand

However,

I(AY)l I= I-A lk + ,\Alkl = IA lk l(1- ,\),

I(Az)t1 = I-A ik + Aikl = 0,

and I(AY)i I.;;; I(Az)l I= °would imply Aik = 0, a contradiction. The result is
that the operator P defined by (3.4) is monotone if and only if the problem
(3.3) is a linear eigenvalue problem ofthe form (3.5).

In general, P is not monotone as the following example shows: M = [a, b],
r=O, s= 1, uo=vo= 1, v1(x)=x andfE C(M) chosen such that for three
different points Xl E [a,b], i = 1, 2, 3, we have f(Xl) i= 0,f(X3) i= 0,f(X2) = 0.
Then the matrix Agiven by (2.5) is nonsingular in this case; in fact, the deter
minant ofA is given by the formula
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and hence is not equal to zero. A = X-I B, with B of (2.6), is given by
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A=

1
1(xJ)

1

f(xa

o

(X J -- x3)f(xJ)

(X2 - xl)f(x l) + (x3- x2)f(X3)
(xJ - x 3)f(xJ)f(X3)

XJ-X2
(xJ - x3)f(x3)

Therefore P defined by (3.4) is monotone on K U {en} if and only if

sgnf(xJ) = sgnf(x3)'

and
sgn (Xl - X2) = sgn (Xl - X3) = sgn (X2 - X3)'

Final remark: In [6] we have shown how the nonlinear eigenvalue problem
(3.3) is related to the linear eigenvalue problem which has been investigated by
Werner [12] in the case of the classical rational approximation problem.
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