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1. INTRODUCTION

We consider a compact Hausdorft space M and denote by C(M) the vector
space of real-valued continuous functions on M. As a norm in C(M) we
introduce the maximum norm

gl = max le(x)], geC(M).

Let U and V be finite-dimensional subspaces of C(M) which are spanned by
Ugs -+, u, and vy, ..., v, € C(M). We assume the convex cone
Vyt={veV:e(x)>0 forall xe M}

to be nonempty. For each f € C(M) we define

. u
pulf) = inf J=-
ueU, veVpu+ Ul
and call this number the minimal distance between f and W,, ={ufv:u e U,

ve V')
The rational approximation problem consists of finding 7 € U and 4 € V,,*
such that

= pu(f)-

M

-

11/t is called a best approximant of f(in W,,). Eachcouple u € U, v € V,,* yields
a trivial upper bound of p,,(f). However, for an estimation of the difference
between || f'— (u/v)llyy and p,,(f) or even for an estimation of p,,(f) itself it is
important to know lower bounds of py(f).

In [5] we have developed a principle for the computation of such lower
bounds which has been originated by Collatz [2], [3], [4] and has been
expanded to nonlinear approximation by Meinardus and Schwedt [10], [11].

In this paper we intend to develop a more general principle which can be
handled in a simpler way. For that purpose we consider a nonempty closed
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subset D of M. D is compact and all the functions g € C(M) can be considered
as real-valued continuous functions on D provided with the norm

lgllp = max |g(x)].
xeD
If we define
Vpt={veV:vx)>0 for all x € D},

we get a nonempty subset of V'since V,, 7 (c V*) is assumed to be nonempty.
Furthermore, for

po(f)=_inf I/~ = )
we have
po(f) < pa(f)-

Our aim is to compute p,(f) or at least to find lower bounds for p,(f) when D
is a certain finite subset of M.
The results of this paper, without proofs, have been given in [6].

2. LowER BOUNDS FOR THE MINIMAL DISTANCE

Notation. By R" we denote the real Euclidean n-space and by 8, the zero
vector of R". For x,y e R"we write x > yifand only if x; > y, fori=1, ..., n.
zT denotes the transposed vector z. By |z| we mean the vector (|z,], ..., |z,])7,
where z = (zq, ..., z))".

Lemma 2.1. If we assume that for a subset D ={xi, ..., x,} of M there
exist two vectors ¢ =(cy, ..., ¢)* # 0, and p=(p,, ..., p)* = 0, and numbers
AL, <o Ay € R such that

12:1 uj(xi)cizoa j=09"'9r5 (2.1)
21 fx)odx) e = 21 Adled + po) o), 2.2)
k=0,...s
then we have
i=11nin A < pp(f)- (2.3)

(The assertion is a slight generalization of Satz 1 in [7] where all the A;’s are
assumed to be equal.)
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Proof. The case A; < 0 for at least one i is trivial. Hence we assume

min A; > 0.
i
For a given u € U and v € ¥,,* the conditions (2.1), (2.2) and p > 8, imply

3 af o0~ 52) ot = & Ml + 0ot

>i=21 Adles| v(x;) = (n}in A) lgl les ] v(x,)

and because of

5 e o) >0
i=1

we have

v(x,)
gl le: | v(xy)

u

v

min A; <

$ af 1050 - mﬁmg“

Since v € U and v € V,* are arbitrarily chosen, we can conclude (2.3), which
completes the proof.

In the case p,,(f) > 0 by Lemma 3.2 of [8] there exist for each A € (0, pp(f)],
n{< r + s + 3) distinct points x4, ..., x, and vectors ¢ # 0,, p > 8, such that
(2.1) and (2.2) hold if we choose

A=A for i=1,...,n

Hence, in principle, p,,(f) can be estimated from below as best as possible by
use of Lemma 2.1. However, Lemma 2.1 is not very convenient for numerical
purposes.

In order to find a result which can be handled with less effort we need the
following:

Assumption. We require the functions

Ugy -+ oy Uy, oSyt f (2.49)

to be linearly independent on M. Under this condition there existn =r + 5 + 2
distinct points x,, ..., x, € M such that the functions uy, ..., 4, v¢°f, ..., ;' f
are linearly independent on

D= {xl, .. .,x,,}.
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This means that the matrix

- u,(x) ) 2
A= 2.5
(st ¢
is nonsingular. If we define the matrix B by
0
B= 2.6
(o) =

where O is a zero matrix consisting of 7 + 1 rows and r + s + 2 columns we
can formulate

LEMMA 2.2. We assume D ={x,,..., x,) C M, n=r + 5+ 2, to be such that
the matrix (2.5) is nonsingular. Then for each vector y = (y,, ..., y,)¥ = 0,,
¥ # 8, there exists exactly one vector ¢ = (cy, ..., ¢,)* # 0, such that

Ac=By 2.7
and we have
¢(3) =min 24 < py(f). @8
ci#0 ,Ci[

Remark. If we choose y > 8, (thatis y,>0fori=1,...,n), we haveg(y) > 0.
Hence in this case we always get a positive lower bound of p,,(f) by solving the
linear system (2.7) and computing g(y) > 0. Furthermore, the assumption

(2.4) yields py,(f) > 0.
Proof. Foreachy e R", y > 0,, y # 6, we have
By # 6,
Otherwise, for each v € V,* we would have
gl (x)y: =0,

which is impossible. Since A is nonsingular for each such y e R" there is
exactly one solution ¢ # 8, of the linear system (2.7). We put I = {i:¢, =0 and
¥ =0} and define foreach i ¢ I

2L ¢, £0
[Cil

Ai=
i =0
P
2j=0,...,rand k=0, ..., s denote row indices and i =1, ..., r + s + 2 denotes column

indices.
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where p; > 0 is at our disposal. If we put p, = 0 for each 7 such that ¢, 5 0, the
system (2.7) can be written as

Z ux)e; =0, j=0,...r,
Zf(x)vk(xl)ci Z Alled] + pi) vulx)s k=0,...,s.

Hence by Lemma 2.1 we conclude

min A; < pp(f)-
i¢r

If for each i ¢ I such that ¢; =0 we choose p, > 0 sufficiently small, we can
achieve

g(y) = min S min A;,
c1#0 |Ci| i¢r

which completes the proof.

THEOREM 2.1. Under the assumption of Lemma 2.2 for the set D ¢ M we have
polf) = max 4(y),
yeK

where q(y) is defined by (2.8) and
K={yeR:y=0, y#0, 2.9

Proof. We have to show that there exists € K such that

4(?) = pp(f)-

Then the assertion follows by Lemma 2.2. By Satz 2 in [7] there exist ¢ € R,
¢#0,and p e R*, p > 8, so that

Aé=pp(f)-B(l¢| +p)
where A and B are given by (2.5) and (2.6). If we put § = pp(f)(|¢| + p), then
y € K, and by Lemma 2.2

q($) =min 7 < pp(f)-
ci;éO l il
On the other hand, for each i such that &, # 0 we have
b2 |5t| + D
P = = B
lcil eo(f) Icil eo(f)

whence p,(f) < g(), which completes the proof.
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In the setting of Theorem 2.1 the computation of p,(f) leads to the following
nonlinear optimization problem (which is solvable): Under the conditions

1
IAylgxya y>0m y#g,.,

A s to be maximized (4 = 4! B).

3. A NONLINEAR EIGENVALUE PROBLEM

Let D={xy, ..., x,},n=r+ s+ 2, be a subset of M such that the matrix (2.5)
is nonsingular. We consider the following problem: Find a number A >0
such that the system

il uj(xl)ci=0’ j:O"--:ra
i G.1)
z‘ v(x)f(x)e;=A 21 |Cti v(xy),

k=0,...,8

has a solution ¢=(c,, ..., ¢,)T # 8, For each such number A we have, by
Lemma 2.1,

A< pp(f)-

If there is a best approximant of f in
an{g;ue Uve VD"};C(D)

we know, [7], that for A=p,(f) there is a nontrivial solution ¢ of (3.1).
Furthermore, we know by Satz 2.1 in [8] that there is a subset D of M such that
for A = p\(f) the system (3.1) admits a nontrivial solution c¢ if the approxima-
tion problem in C(M) is solvable. By the substitution

y=A|c|a B= (3.2)

Dot | et

the above problem turns out to be equivalent to the following nonlinear
eigenvalue problem: Find a number p > 0 such that there is a solution y € K of

|Ay| = py (3.3
where A = A~! B, 4 is given by (2.5), B by (2.6) and K by (2.9).



MINIMAL DISTANCE IN RATIONAL APPROXIMATION 173
THEOREM 3.1. There isay € K and a p. > 0 such that (3.3) holds, i.e., such that

c=Ay and A=-—
122

solve problem (3.1).
Proof. (According to [9].) We define a mapping P :R" — R" by
P(y)=|4y|, yeR" (3.4)
In the proof of Lemma 2.2 we have shown
By#6, foreach yek.

Hence P(y) = |Ay| = |4~ By| > 6, and %0, for each y € K; that is, P(K) c K.
Evidently the subset

&=bekwumwigyﬁd}

of K is convex and compact and we have

IPGs:= 3 P()>0
for all y € S. Hence the operator
5 P(y)
P(y)=-- 1
)= iBo),

is defined on S, continuous and maps S into itself. By Brouwer’s fixed-point
theorem there is a y* € S such that P(y*) = y* or

P(y*) = |Ay*| = p* y*
where p* = [[P(y*)|l; > 0. This completes the proof.

For numerical purposes it would be very helpful if the operator P defined by
(3.4) were monotone on K U {8,}; that is,

O, <y<z implies P(y) < P(2).
If we then start with an arbitrary y° € K and define a sequence y* € K by
yk+l:P(yk)9 k=09132a-~°’
it turns out that for the numbers
y
= min S5 d jr = max -
we have
Go<qi<.-..<qu<pp(f)<ge<...<q1<Go
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and
po(f) = }cim G = }cim G

if P is strictly monotone in the sense of Bohl [/].
If we define the matrix |4| by taking the absolute values of the elements of 4
as elements of |4], then P is obviously monotone on KU {8,} if we have

|Ay]|=14ly  foreach yeKk. (3.5)

Sufficient for (3.5) is that in each row of A all the elements which are unequal
to zero have the same sign. But as E. Bohl pointed out this is also necessary for
P to be monotone on K U {6,}. Bohl gave a simple (unpublished) proof for
this fact, namely: Assume that for some index i and two indices j and k with
Jj#k we have 4,;#0, A, #0 and sgn 4;; =—sgn A4,,. Then we define two
vectors yand z € R" by

0 for I#j and k, 0 for I+#j and k,
A for I=k, 1 for =k,
= and z;=
Aik . Aik .
—== for I=j, —— for I=j,
Ay / Ay /
I=1,...n

If we choose 0 < A < 1, then y, z € Kand
f.<y<z

However,
|(4y);] = I"'Aik + Ay | = |Al(1 = A),

[(A2);| = [=Au + Ay =0,

and |(4y);| < |(42);| = 0 would imply 4, =0, a contradiction. The result is
that the operator P defined by (3.4) is monotone if and only if the problem
(3.3) is a linear eigenvalue problem of the form (3.5).

In general, P is not monotone as the following example shows: M = [a,b],
r=0,5=1, ug=vy=1, v)(x) =x and f'e C(M) chosen such that for three
different points x; € [a,b], i=1, 2, 3, we have f(x;) #0, f(x3) #0, f(x,) =0.
Then the matrix 4 given by (2.5) is nonsingular in this case; in fact, the deter-
minant of 4 is given by the formula

det (4) = (x; — X3)f(x) f(x3)
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and hence is not equal to zero. 4 = A~! B, with B of (2.6), is given by

1 B R B 0
S (v = x3) f(x))
4= - 1 vy = x) [ (1) + (x5 — %) f(x3) b
J(xp) (rp = x)f(x ) f(x3) S(x3)
0 B e b
(orr — x3) f(x3) S(x3)

Therefore P defined by (3.4) is monotone on K U {8,} if and only if

sgn f(x,) = sgn f(x3),

and

3

sgn (x| — x;) = sgn (¥; — x3) = sgn (x; — X3).

Final remark: In [6] we have shown how the nonlinear eigenvalue problem
.3) is related to the linear eigenvalue problem which has been investigated by

Werner [12] in the case of the classical rational approximation problem.
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