Lower Bounds for the Minimal Distance in Rational Approximation ${ }^{1}$

Werner Krabs
Institut für Angewandte Mathematik der Universität, Hamburg, Germany

1. Introduction

We consider a compact Hausdorff space M and denote by $C(M)$ the vector space of real-valued continuous functions on M. As a norm in $C(M)$ we introduce the maximum norm

$$
\|g\|_{M}=\max _{x \in M}|g(x)|, \quad g \in C(M) .
$$

Let U and V be finite-dimensional subspaces of $C(M)$ which are spanned by u_{0}, \ldots, u_{r} and $v_{0}, \ldots, v_{s} \in C(M)$. We assume the convex cone

$$
V_{M}{ }^{+}=\{v \in V: v(x)>0 \quad \text { for all } \quad x \in M\}
$$

to be nonempty. For each $f \in C(M)$ we define

$$
\rho_{M}(f)=\inf _{u \in U, v \in V_{M^{+}}}\left\|f-\frac{u}{v}\right\|_{M}
$$

and call this number the minimal distance between f and $W_{M}=\{u / v: u \in U$, $\left.v \in V_{M}{ }^{+}\right\}$.

The rational approximation problem consists of finding $\hat{u} \in U$ and $\hat{v} \in V_{M}{ }^{+}$ such that

$$
\left\|f-\frac{\hat{u}}{\hat{v}}\right\|_{M}=\rho_{M}(f) .
$$

$\hat{u} \mid \hat{v}$ is called a best approximant of $f\left(\mathrm{in} W_{M}\right)$. Each couple $u \in U, v \in V_{M}{ }^{+}$yields a trivial upper bound of $\rho_{M}(f)$. However, for an estimation of the difference between $\|f-(u / v)\|_{M}$ and $\rho_{M}(f)$ or even for an estimation of $\rho_{M}(f)$ itself it is important to know lower bounds of $\rho_{M}(f)$.
In [5] we have developed a principle for the computation of such lower bounds which has been originated by Collatz [2], [3], [4] and has been expanded to nonlinear approximation by Meinardus and Schwedt [10], [11].

In this paper we intend to develop a more general principle which can be handled in a simpler way. For that purpose we consider a nonempty closed

[^0]subset D of $M . D$ is compact and all the functions $g \in C(M)$ can be considered as real-valued continuous functions on D provided with the norm
$$
\|g\|_{D}=\max _{x \in D}|g(x)|
$$

If we define

$$
V_{D}^{+}=\{v \in V: v(x)>0 \quad \text { for all } \quad x \in D\}
$$

we get a nonempty subset of V since $V_{M}{ }^{+}\left(\subseteq V_{D}{ }^{+}\right)$is assumed to be nonempty. Furthermore, for

$$
\rho_{D}(f)=\inf _{u \in U, v \in D_{D^{+}}}\left\|f-\frac{u}{v}\right\|_{D}
$$

we have

$$
\rho_{D}(f) \leqslant \rho_{M}(f)
$$

Our aim is to compute $\rho_{D}(f)$ or at least to find lower bounds for $\rho_{D}(f)$ when D is a certain finite subset of M.

The results of this paper, without proofs, have been given in [6].

2. Lower Bounds for the Minimal Distance

Notation. By \boldsymbol{R}^{n} we denote the real Euclidean n-space and by θ_{n} the zero vector of \boldsymbol{R}^{n}. For $x, y \in \boldsymbol{R}^{n}$ we write $x \geqslant y$ if and only if $x_{i} \geqslant y_{i}$ for $i=1, \ldots, n$. z^{T} denotes the transposed vector z. By $|z|$ we mean the vector $\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)^{T}$, where $z=\left(z_{1}, \ldots, z_{n}\right)^{T}$.

Lemma 2.1. If we assume that for a subset $D=\left\{x_{1}, \ldots, x_{n}\right\}$ of M there exist two vectors $c=\left(c_{1}, \ldots, c_{n}\right)^{T} \neq \theta_{n}$ and $p=\left(p_{1}, \ldots, p_{n}\right)^{T} \geqslant \theta_{n}$ and numbers $\lambda_{1}, \ldots, \lambda_{n} \in \boldsymbol{R}$ such that

$$
\begin{align*}
\sum_{i=1}^{n} u_{j}\left(x_{i}\right) c_{i} & =0, \quad j=0, \ldots, r \tag{2.1}\\
\sum_{i=1}^{n} f\left(x_{i}\right) v_{k}\left(x_{i}\right) c_{i} & =\sum_{i=1}^{n} \lambda_{i}\left(\left|c_{i}\right|+p_{i}\right) v_{k}\left(x_{i}\right) \tag{2.2}\\
k & =0, \ldots, s
\end{align*}
$$

then we have

$$
\begin{equation*}
\min _{i=1, \ldots, n} \lambda_{i} \leqslant \rho_{D}(f) \tag{2.3}
\end{equation*}
$$

(The assertion is a slight generalization of Satz 1 in [7] where all the λ_{i} 's are assumed to be equal.)

Proof. The case $\lambda_{i} \leqslant 0$ for at least one i is trivial. Hence we assume

$$
\min _{i} \lambda_{i}>0
$$

For a given $u \in U$ and $v \in V_{D}{ }^{+}$the conditions (2.1), (2.2) and $p \geqslant \theta_{n}$ imply

$$
\begin{gathered}
\sum_{i=1}^{n} c_{i}\left(f\left(x_{i}\right)-\frac{u\left(x_{i}\right)}{v\left(x_{i}\right)}\right) v\left(x_{i}\right)=\sum_{i=1}^{n} \lambda_{i}\left(\left|c_{i}\right|+p_{i}\right) v\left(x_{i}\right) \\
\quad \geqslant \sum_{i=1} \lambda_{i}\left|c_{i}\right| v\left(x_{i}\right) \geqslant\left(\min _{i} \lambda_{i}\right) \sum_{i=1}\left|c_{i}\right| v\left(x_{i}\right)
\end{gathered}
$$

and because of

$$
\sum_{i=1}^{n}\left|c_{i}\right| v\left(x_{i}\right)>0
$$

we have

$$
\min \lambda_{i} \leqslant \frac{\sum_{i=1}^{n} c_{i}\left(f\left(x_{i}\right)-\frac{u\left(x_{i}\right)}{v\left(x_{i}\right)}\right) v\left(x_{i}\right)}{\sum_{i=1}^{n}\left|c_{i}\right| v\left(x_{i}\right)} \leqslant\left\|f-\frac{u}{v}\right\|_{D}
$$

Since $u \in U$ and $v \in V_{D}{ }^{+}$are arbitrarily chosen, we can conclude (2.3), which completes the proof.

In the case $\rho_{M}(f)>0$ by Lemma 3.2 of [8] there exist for each $\lambda \in\left(0, \rho_{M}(f)\right.$], $n(\leqslant r+s+3)$ distinct points x_{1}, \ldots, x_{n} and vectors $c \neq \theta_{n}, p \geqslant \theta_{n}$ such that (2.1) and (2.2) hold if we choose

$$
\lambda_{i}=\lambda \quad \text { for } \quad i=1, \ldots, n .
$$

Hence, in principle, $\rho_{M}(f)$ can be estimated from below as best as possible by use of Lemma 2.1. However, Lemma 2.1 is not very convenient for numerical purposes.

In order to find a result which can be handled with less effort we need the following:

Assumption. We require the functions

$$
\begin{equation*}
u_{0}, \ldots, u_{r}, \quad v_{0} \cdot f, \ldots, v_{s} \cdot f \tag{2.4}
\end{equation*}
$$

to be linearly independent on M. Under this condition there exist $n=r+s+2$ distinct points $x_{1}, \ldots, x_{n} \in M$ such that the functions $u_{0}, \ldots, u_{r}, v_{0} \cdot f, \ldots, v_{s} \cdot f$ are linearly independent on

$$
D=\left\{x_{1}, \ldots, x_{n}\right\}
$$

This means that the matrix

$$
\begin{equation*}
\tilde{A}=\binom{u_{j}\left(x_{i}\right)}{v_{k}\left(x_{i}\right) f\left(x_{i}\right)}^{2} \tag{2.5}
\end{equation*}
$$

is nonsingular. If we define the matrix B by

$$
\begin{equation*}
B=\binom{O}{v_{k}\left(x_{i}\right)} \tag{2.6}
\end{equation*}
$$

where O is a zero matrix consisting of $r+1$ rows and $r+s+2$ columns we can formulate

Lemma 2.2. We assume $D=\left\{x_{1}, \ldots, x_{n}\right) \subseteq M, n=r+s+2$, to be such that the matrix (2.5) is nonsingular. Then for each vector $y=\left(y_{1}, \ldots, y_{n}\right)^{T} \geqslant \theta_{n}$, $y \neq \theta_{n}$, there exists exactly one vector $c=\left(c_{1}, \ldots, c_{n}\right)^{T} \neq \theta_{n}$ such that

$$
\begin{equation*}
\tilde{A c}=B y \tag{2.7}
\end{equation*}
$$

and we have

$$
\begin{equation*}
q(y)=\min _{c_{i} \neq 0} \frac{y_{i}}{\left|c_{i}\right|} \leqslant \rho_{D}(f) . \tag{2.8}
\end{equation*}
$$

Remark. If we choose $y>\theta_{n}$ (that is $y_{i}>0$ for $i=1, \ldots, n$), we have $q(y)>0$. Hence in this case we always get a positive lower bound of $\rho_{M}(f)$ by solving the linear system (2.7) and computing $q(y)>0$. Furthermore, the assumption (2.4) yields $\rho_{M}(f)>0$.

Proof. For each $y \in \boldsymbol{R}^{n}, y \geqslant \theta_{n}, y \neq \theta_{n}$ we have

$$
B y \neq \theta_{n}
$$

Otherwise, for each $v \in V_{D}{ }^{+}$we would have

$$
\sum_{i=1}^{n} v\left(x_{i}\right) y_{i}=0
$$

which is impossible. Since \tilde{A} is nonsingular for each such $y \in \boldsymbol{R}^{n}$ there is exactly one solution $c \neq \theta_{n}$ of the linear system (2.7). We put $I=\left\{i: c_{i}=0\right.$ and $\left.y_{i}=0\right\}$ and define for each $i \notin I$

$$
\lambda_{i}=\left\{\begin{array}{lll}
\frac{y_{i}}{\left|c_{i}\right|} & \text { if } & c_{i} \neq 0 \\
\frac{y_{i}}{p_{i}} & \text { if } & c_{i}=0
\end{array}\right.
$$

[^1]where $p_{i}>0$ is at our disposal. If we put $p_{i}=0$ for each i such that $c_{i} \neq 0$, the system (2.7) can be written as
\[

$$
\begin{aligned}
& \sum_{i \notin I} u_{j}\left(x_{i}\right) c_{i}=0, \quad j=0, \ldots, r \\
& \sum_{i \neq I} f\left(x_{i}\right) v_{k}\left(x_{i}\right) c_{i}=\sum_{i \notin I} \lambda_{i}\left(\left|c_{i}\right|+p_{i}\right) v_{k}\left(x_{i}\right), \quad k=0, \ldots, s .
\end{aligned}
$$
\]

Hence by Lemma 2.1 we conclude

$$
\min _{i \notin I} \lambda_{i} \leqslant \rho_{D}(f) .
$$

If for each $i \notin I$ such that $c_{l}=0$ we choose $p_{l}>0$ sufficiently small, we can achieve

$$
q(y)=\min _{c_{i} \neq 0} \frac{y_{i}}{\left|c_{l}\right|}=\min _{i \notin I} \lambda_{i}
$$

which completes the proof.
Theorem 2.1. Under the assumption of Lemma 2.2 for the set $D \subseteq M$ we have

$$
\rho_{D}(f)=\max _{y \in K} q(y),
$$

where $q(y)$ is defined by (2.8) and

$$
\begin{equation*}
K=\left\{y \in \boldsymbol{R}^{n}: y \geqslant \theta_{n}, \quad y \neq \theta_{n}\right\} . \tag{2.9}
\end{equation*}
$$

Proof. We have to show that there exists $\hat{y} \in K$ such that

$$
q(\hat{y})=\rho_{D}(f) .
$$

Then the assertion follows by Lemma 2.2. By Satz 2 in [7] there exist $\hat{c} \in \boldsymbol{R}^{n}$, $\hat{c} \neq \theta_{n}$ and $p \in R^{n}, p \geqslant \theta_{n}$ so that

$$
\tilde{A} \hat{c}=\rho_{D}(f) \cdot B(|\hat{c}|+p)
$$

where \tilde{A} and B are given by (2.5) and (2.6). If we put $\hat{y}=\rho_{D}(f)(|\hat{c}|+p)$, then $\hat{y} \in K$, and by Lemma 2.2

$$
q(\hat{y})=\min _{\hat{c}_{1} \neq 0} \frac{\hat{y}_{i}}{\left|\hat{c}_{i}\right|} \leqslant \rho_{D}(f) .
$$

On the other hand, for each i such that $\hat{c}_{i} \neq 0$ we have

$$
\frac{\hat{y}_{i}}{\left|\hat{c}_{i}\right|}=\rho_{D}(f) \frac{\left|\hat{c}_{i}\right|+p_{i}}{\left|\hat{c}_{i}\right|} \geqslant \rho_{D}(f),
$$

whence $\rho_{D}(f) \leqslant q(\hat{y})$, which completes the proof.

In the setting of Theorem 2.1 the computation of $\rho_{D}(f)$ leads to the following nonlinear optimization problem (which is solvable): Under the conditions

$$
|A y| \leqslant \frac{1}{\lambda} y, \quad y \geqslant \theta_{n}, \quad y \neq \theta_{n}
$$

λ is to be maximized $\left(A=\tilde{A}^{-1} B\right)$.

3. A Nonlinear Eigenvalue Problem

Let $D=\left\{x_{1}, \ldots, x_{n}\right\}, n=r+s+2$, be a subset of M such that the matrix (2.5) is nonsingular. We consider the following problem: Find a number $\lambda>0$ such that the system

$$
\begin{gather*}
\sum_{i=1}^{n} u_{j}\left(x_{i}\right) c_{i}=0, \quad j=0, \ldots, r \tag{3.1}\\
\sum_{i=1}^{n} v_{k}\left(x_{i}\right) f\left(x_{i}\right) c_{i}=\lambda \sum_{i=1}^{n}\left|c_{i}\right| v_{k}\left(x_{i}\right) \\
k=0, \ldots, s
\end{gather*}
$$

has a solution $c=\left(c_{i}, \ldots, c_{n}\right)^{T} \neq \theta_{n}$ For each such number λ we have, by Lemma 2.1,

$$
\lambda \leqslant \rho_{\mathrm{D}}(f)
$$

If there is a best approximant of f in

$$
W_{D}=\left\{\frac{u}{v} ; u \in U, v \in V_{D}^{+}\right\} \subseteq C(D)
$$

we know, [7], that for $\lambda=\rho_{D}(f)$ there is a nontrivial solution c of (3.1). Furthermore, we know by Satz 2.1 in [8] that there is a subset D of M such that for $\lambda=\rho_{M}(f)$ the system (3.1) admits a nontrivial solution c if the approximation problem in $C(M)$ is solvable. By the substitution

$$
\begin{equation*}
y=\lambda|c|, \quad \mu=\frac{1}{\lambda} \tag{3.2}
\end{equation*}
$$

the above problem turns out to be equivalent to the following nonlinear eigenvalue problem: Find a number $\mu>0$ such that there is a solution $y \in K$ of

$$
\begin{equation*}
|A y|=\mu y \tag{3.3}
\end{equation*}
$$

where $A=\tilde{A}^{-1} B, \tilde{A}$ is given by (2.5), B by (2.6) and K by (2.9).

Theorem 3.1. There is $a y \in K$ and $a \mu>0$ such that (3.3) holds, i.e., such that

$$
c=A y \quad \text { and } \quad \lambda=\frac{1}{\mu}
$$

solve problem (3.1).
Proof. (According to [9].) We define a mapping $P: \boldsymbol{R}^{\boldsymbol{n}} \rightarrow \boldsymbol{R}^{\boldsymbol{n}}$ by

$$
\begin{equation*}
P(y)=|A y|, \quad y \in R^{n} \tag{3.4}
\end{equation*}
$$

In the proof of Lemma 2.2 we have shown

$$
B y \neq \theta_{n} \quad \text { for each } \quad y \in K .
$$

Hence $P(y)=|A y|=\left|\tilde{A}^{-1} B y\right| \geqslant \theta_{n}$ and $\neq \theta_{n}$ for each $y \in K$; that is, $P(K) \subseteq K$. Evidently the subset

$$
S=\left\{y \in K:\|y\|_{1}:=\sum_{i=1}^{n} y_{i}=1\right\}
$$

of K is convex and compact and we have

$$
\|P(y)\|_{1}:=\sum_{i=1}^{n} P(y)_{i}>0
$$

for all $y \in S$. Hence the operator

$$
\tilde{P}(y)=\frac{P(y)}{\|P(y)\|_{1}}
$$

is defined on S, continuous and maps S into itself. By Brouwer's fixed-point theorem there is a $y^{*} \in S$ such that $\widetilde{P}\left(y^{*}\right)=y^{*}$ or

$$
P\left(y^{*}\right)=\left|A y^{*}\right|=\mu^{*} y^{*}
$$

where $\mu^{*}=\left\|P\left(y^{*}\right)\right\|_{1}>0$. This completes the proof.
For numerical purposes it would be very helpful if the operator P defined by (3.4) were monotone on $K \cup\left\{\theta_{n}\right\}$; that is,

$$
\theta_{n} \leqslant y \leqslant z \quad \text { implies } \quad P(y) \leqslant P(z) .
$$

If we then start with an arbitrary $y^{0} \in K$ and define a sequence $y^{k} \in K$ by

$$
y^{k+1}=P\left(y^{k}\right), \quad k=0,1,2, \ldots
$$

it turns out that for the numbers

$$
q_{k}=\min _{y_{i}^{k+1} \neq 0} \frac{y_{i}^{k}}{y_{i}^{k+1}} \quad \text { and } \quad \hat{q}_{k}=\max _{y_{i}^{k+1} \neq 0} \frac{y_{i}^{k}}{y_{i}^{k+1}}
$$

we have

$$
q_{0} \leqslant q_{1} \leqslant \ldots \leqslant q_{k} \leqslant \rho_{D}(f) \leqslant \hat{q}_{k} \leqslant \ldots \leqslant \hat{q}_{1} \leqslant \hat{q}_{0}
$$

and

$$
\rho_{D}(f)=\lim _{k \rightarrow \infty} q_{k}=\lim _{k \rightarrow \infty} \hat{q}_{k}
$$

if P is strictly monotone in the sense of Bohl [l].
If we define the matrix $|A|$ by taking the absolute values of the elements of A as elements of $|A|$, then P is obviously monotone on $K \cup\left\{\theta_{n}\right\}$ if we have

$$
\begin{equation*}
|A y|=|A| y \quad \text { for each } \quad y \in K \tag{3.5}
\end{equation*}
$$

Sufficient for (3.5) is that in each row of A all the elements which are unequal to zero have the same sign. But as E. Bohl pointed out this is also necessary for P to be monotone on $K \cup\left\{\theta_{n}\right\}$. Bohl gave a simple (unpublished) proof for this fact, namely: Assume that for some index i and two indices j and k with $j \neq k$ we have $A_{i j} \neq 0, A_{i k} \neq 0$ and $\operatorname{sgn} A_{i j}=-\operatorname{sgn} A_{i k}$. Then we define two vectors y and $z \in \boldsymbol{R}^{n}$ by

$$
\begin{gathered}
y_{l}=\left\{\begin{array}{cc}
0 & \text { for } l \neq j \text { and } k, \\
\lambda & \text { for } l=k, \\
-\frac{A_{i k}}{A_{i j}} & \text { for } l=j,
\end{array}\right\} \text { and } z_{l}=\left\{\begin{array}{ccl}
0 & \text { for } l \neq j \text { and } k, \\
1 & \text { for } l=k, \\
-\frac{A_{i k}}{A_{i j}} & \text { for } l=j,
\end{array}\right\} \\
l=1, \ldots n .
\end{gathered}
$$

If we choose $0 \leqslant \lambda<1$, then $y, z \in K$ and

$$
\theta_{n} \leqslant y \leqslant z
$$

However,

$$
\begin{aligned}
& \left|(A y)_{i}\right|=\left|-A_{i k}+\lambda A_{i k}\right|=\left|A_{i k}\right|(1-\lambda) \\
& \left|(A z)_{i}\right|=\left|-A_{i k}+A_{i k}\right|=0
\end{aligned}
$$

and $\left|(A y)_{i}\right| \leqslant\left|(A z)_{i}\right|=0$ would imply $A_{i k}=0$, a contradiction. The result is that the operator P defined by (3.4) is monotone if and only if the problem (3.3) is a linear eigenvalue problem of the form (3.5).

In general, P is not monotone as the following example shows: $M=[a, b]$, $r=0, s=1, u_{0}=v_{0} \equiv 1, v_{1}(x)=x$ and $f \in C(M)$ chosen such that for three different points $x_{i} \in[a, b], i=1,2,3$, we have $f\left(x_{1}\right) \neq 0, f\left(x_{3}\right) \neq 0, f\left(x_{2}\right)=0$. Then the matrix \tilde{A} given by (2.5) is nonsingular in this case; in fact, the determinant of \tilde{A} is given by the formula

$$
\operatorname{det}(\widetilde{A})=\left(x_{1}-x_{3}\right) f\left(x_{1}\right) f\left(x_{3}\right)
$$

and hence is not equal to zero. $A=\tilde{A}^{-1} B$, with B of (2.6), is given by

$$
A=\left(\begin{array}{ccc}
\frac{1}{f\left(x_{1}\right)} & \frac{x_{2}-x_{3}}{\left(x_{1}-x_{3}\right) f\left(x_{1}\right)} & 0 \\
\frac{1}{f\left(x_{1}\right)} & \frac{\left(x_{2}-x_{1}\right) f\left(x_{1}\right)+\left(x_{3}-x_{2}\right) f\left(x_{3}\right)}{\left(x_{1}-x_{3}\right) f\left(x_{1}\right) f\left(x_{3}\right)} & \frac{1}{f\left(x_{3}\right)} \\
0 & \frac{x_{1}-x_{2}}{\left(x_{1}-x_{3}\right) f\left(x_{3}\right)} & \frac{1}{f\left(x_{3}\right)}
\end{array}\right)
$$

Therefore P defined by (3.4) is monotone on $K \cup\left\{\theta_{n}\right\}$ if and only if

$$
\operatorname{sgn} f\left(x_{1}\right)=\operatorname{sgn} f\left(x_{3}\right),
$$

and

$$
\operatorname{sgn}\left(x_{1}-x_{2}\right)=\operatorname{sgn}\left(x_{1}-x_{3}\right)=\operatorname{sgn}\left(x_{2}-x_{3}\right) .
$$

Final remark: In [6] we have shown how the nonlinear eigenvalue problem (3.3) is related to the linear eigenvalue problem which has been investigated by Werner [12] in the case of the classical rational approximation problem.

References

1. E. Bohl, Eigenwertaufgaben bei monotonen Operatoren und Fehlerabschätzungen für Operatorgleichungen. Arch. Rat. Mech. Anal. 22 (1966), 313-332.
2. L. Collatz, Approximation von Funktionen bei einer und bei mehreren unabhängigen Veränderlichen. Z. Angew. Math. Mech. 36 (1956), 198-211.
3. L. Collatz, Tschebyscheffsche Annäherung mit rationalen Funktionen. Abhandl. Math. Sem. Univ. Hamburg 24 (1960), 70-78.
4. L. Collatz, Inclusion theorems for the minimal distance in rational Tschebyscheff approximation with several variables. In: "Approximation of Functions," (H. L. Garabedian, Ed.). Elsevier, Amsterdam, 1965.
5. W. Krabs, Über ein Kriterium von Kolmogoroff bei der Approximation von Funktionen. To appear in Internat. Ser. Numer. Math., Birkhäuser, Basel.
6. W. Krabs, Eine nichtlineare Eigenwertaufgabe bei rationaler Approximation. Z. Angew. Math. Mech. T47 (1967) 57-60.
7. W. Krabs, Dualität bei diskreter rationaler Approximation. Internat. Ser. Numer. Math., Birkhäuser, Basel. (1967), 33-41.
8. W. Krabs, Zur verallgemeinerten rationalen Approximation. Math. Z. 94 (1966), 84-97.
9. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space. Transl. Am. Math. Soc. 10 (1962), 201.
10. G. Meinardus, "Approximation von Funktionen und ihre numerische Berhandlung." Springer, Berlin, 1964.
11. G. Meindarus and D. Schwedt, Nichtlineare Approximationen. Arch. Rat. Mech. Anal. 17 (1964), 297-326.
12. H. Werner, Rationale Tschebyscheff-Approximation, Eigenwerttheorie und Differenzenrechnung. Arch. Rat. Mech. Anal. 13 (1963), 330-347.

[^0]: ${ }^{1}$ This research was supported by the Air Force Office of Scientific Research under grant AF-AFOSR-937-67.

[^1]: ${ }^{2} j=0, \ldots, r$ and $k=0, \ldots, s$ denote row indices and $i=1, \ldots, r+s+2$ denotes column indices.

